Kamis, 09 Februari 2012

RAM


2.1 Pengertian RAM
            Random access memory (RAM) adalah sebuah tipe penyimpanan komputer yang isinya dapat diakses dalam waktu yang tetap tidak memperdulikan letak data tersebut dalam memori. Ini berlawanan dengan alat memori urut, seperti tape magnetik, disk dan drum, di mana gerakan mekanikal dari media penyimpanan memaksa komputer untuk mengakses data secara berurutan.
Pertama kali dikenal pada tahun 60'an. Hanya saja saat itu memori semikonduktor belumlah populer karena harganya yang sangat mahal. Saat itu lebih lazim untuk menggunakan memori utama magnetic.Perusahaan semikonduktor seperti Intel memulai debutnya dengan memproduksi RAM , lebih tepatnya jenis DRAM.
Biasanya RAM dapat ditulis dan dibaca, berlawanan dengan memori-baca-saja (read-only-memory, ROM), RAM biasanya digunakan untuk penyimpanan primer (memori utama) dalam komputer untuk digunakan dan mengubah informasi secara aktif, meskipun beberapa alat menggunakan beberapa jenis RAM untuk menyediakan penyimpanan sekunder jangka-panjang.
Tetapi ada juga yang berpendapat bahwa ROM merupakan jenis lain dari RAM, karena sifatnya yang sebenarnya juga Random Access seperti halnya SRAM ataupun DRAM. Hanya saja memang proses penulisan pada ROM membutuhkan proses khusus yang tidak semudah dan fleksibel seperti halnya pada SRAM atau DRAM. Selain itu beberapa bagian dari space addres RAM ( memori utama ) dari sebuah sistem yang dipetakan kedalam satu atau dua chip ROM.

2.2 Fungsi RAM
    Fungsi Ram yaitu untuk menyimpan instruksi sementara dari komputer untuk mengeluarkannya ke output device.Saat CPU membuka sebuah program aplikasi dari harddisk-seperti word processing, spreadsheet, ataupun game-ia akan me-loading-nya ke memory. Hal ini memungkinkan aplikasi bekerja lebih cepat dibandingkan harus mengakses langsung ke harddisk yang memang jauh lebih lambat.
Sebab  harddisk memang bertugas sebagai storage data, bukan sebagai memory. Dengan mengakses data ataupun aplikasi yang tersedia di RAM, mempercepat PC Anda dalam menyelesaikan tugasnya.
Analogi sederhana untuk mengerti hal ini, lebih mudah jika mengambil pada kegiatan nyata dalam kehidupan sehari-hari. Misalnya pada lingkungan kerja. Di mana ada meja kerja, dan sebuah lemari arsip. Lemari arsip dapat diandaikan layaknya harddisk, di mana tersedia berkas-berkas dan informasi yang dibutuhkan. Saat mulai bekerja, berkas-berkas informasi akan dikeluarkan dari dalam lemari ke meja kerja. Ini untuk memudahkan dan mempercepat akses ke informasi yang dibutuhkan. Maka, meja kerja dapat dianalogikan sebagai memory pada PC.

2.3   Istilah – istilah pada RAM
Begitu banyak nama dan istilah spesifik digunakan pada RAM. Kadang dapat membingungkan. Tapi tidak jadi masalah, setelah Anda membaca penjelasan singkatnya berikut. Ini dapat dijadikan panduan, setidaknya untuk membaca spesifikasi dan memperhitungkan dengan kemampuan produk yang bersangkutan.
2.4    Speed
         Speed atau kecepatan, makin menjadi faktor penting dalam pemilihan sebuah modul memory. Bertambah cepatnya CPU, ditambah dengan pengembangan digunakannya dual-core, membuat RAM harus memiliki kemampuan yang lebih cepat untuk dapat melayani CPU.
Ada beberapa paramater penting yang akan berpengaruh dengan kecepatan sebuah memory.
2.4.1 Megahertz
       Penggunaan istilah ini, dimulai pada jaman kejayaan SDRAM. Kecepatan memory, mulai dinyatakan dalam megahertz (MHz). Dan masih tetap digunakan, bahkan sampai pada DDR2.
Perhitungan berdasarkan selang waktu (periode) yang dibutuhkan antara setiap clock cycle. Biasanya dalam orde waktu nanosecond. Seperti contoh pada memory dengan aktual clock speed 133 MHz, akan membutuhkan access time 8ns untuk 1 clock cycle.
Kemudian keberadaan SDRAM tergeser dengan DDR (Double Data Rate). Dengan pengembangan utama pada kemampuan mengirimkan data dua kali lebih banyak. DDR mengirimkan data dua kali dalam satu clock cycle.
Kebanyakan produk mulai menggunakan clock speed efektif, hasil perkalian dua kali data yang dikirim. Ini sebetulnya lebih tepat jika disebut sebagai DDR Rating.
Hal yang sama juga terjadi untuk DDR2. Merupakan hasil pengembangan dari DDR. Dengan kelebihan utama pada rendahnya tegangan catudaya yang mengurangi panas saat beroperasi. Juga kapasitas memory chip DDR2 yang meningkat drastis, memungkinkan sebuah keping DDR2 memiliki kapasitas hingga 2 GB. DDR2 juga mengalami peningkatan kecepatan dibanding DDR.




2.4.2 PC Rating
Pada modul DDR, sering ditemukan istilah misalnya PC3200. Untuk modul DDR2, PC2-3200. Dari mana angka ini muncul?
Biasa dikenal dengan PC Rating untuk modul DDR dan DDR2. Sebagai contoh kali ini adalah sebuah modul DDR dengan clock speed 200 MHz. Atau untuk DDR Rating disebut DDR400. Dengan bus width 64-bit, maka data yang mampu ditransfer adalah 25.600 megabit per second (=400 MHz x 64-bit). Dengan 1 byte = 8-bit, maka dibulatkan menjadi 3.200MBps (Mebabyte per second).  Angka throughput inilah yang dijadikan nilai dari PC Rating. Tambahan angka “2″, baik pada PC Rating maupu DDR Rating, hanya untuk membedakan antara DDR dan DDR2.

2.4.3 CAS Latency
Akronim CAS berasal dari singkatan column addres strobe atau column address select. Arti keduanya sama, yaitu lokasi spesifik dari sebuah data array pada modul DRAM.
CAS Latency, atau juga sering disingkat dengan CL, adalah jumlah waktu yang dibutuhkan (dalam satuan clock cycle) selama delay waktu antara data request dikirimkan ke memory controller untuk proses read, sampai memory modul berhasil mengeluarkan data output. Semakin rendah spesifikasi CL yang dimiliki sebuah modul RAM, dengan clock speed yang sama, akan menghasilkan akses memory yang lebih cepat.

2.5  MENGENAL BAGIAN-BAGIAN RAM
Secara fisik, komponen PC yang satu ini termasuk komponen dengan ukuran yang kecil dan sederhana. Dibandingkan dengan komponen PC lainnya.
Sekilas, ia hanya berupa sebuah potongan kecil PCB, dengan beberapa tambahan komponen hitam. Dengan tambahan titik-titik contact point, untuk memory berinteraksi dengan motherboard. Inilah di antaranya.

2.5.1 PCB (Printed Circuit Board)
Pada umumnya, papan PCB berwana hijau. Pada PCB inilah beberapa komponen chip memory terpasang.
PCB ini sendiri tersusun dari beberapa lapisan (layer). Pada setiap lapisan terpasang jalur ataupun sirkuit, untuk mengalirkan listrik dan data. Secara teori, semakin banyak jumlah layer yang digunakan pada PCB memory, akan semakin luas penampang yang tersedia dalam merancang jalur. Ini memungkinkan jarak antar jalur dan lebar jalur dapat diatur dengan lebih leluasa, dan menghindari noise interferensi antarjalur pada PCB. Dan secara keseluruhan akan membuat modul memory tersebut lebih stabil dan cepat kinerjanya. Itulah sebabnya pada beberapa iklan untuk produk memory, menekankan jumlah layer pada PCB yang digunakan modul memory produk yang bersangkutan.

2.5.2 Contact Point
Sering juga disebut contact finger, edge connector, atau lead. Saat modul memory dimasukkan ke dalam slot memory pada motherboard, bagian inilah yang menghubungkan informasi antara motherboard dari dan ke modul memory. Konektor ini biasa terbuat dari tembaga ataupun emas. Emas memiliki nilai konduktivitas yang lebih baik. Namun konsekuensinya, dengan harga yang lebih mahal. Sebaiknya pilihan modul memory disesuaikan dengan bahan konektor yang digunakan pada slot memory motherboard. Dua logam yang berbeda, ditambah dengan aliran listrik saat PC bekerja lebih memungkinkan terjadinya reaksi korosif.
Pada contact point, yang terdiri dari ratusan titik, dipisahkan dengan lekukan khusus. Biasa disebut sebagai notch. Fungsi utamanya, untuk mencegah kesalahan pemasangan jenis modul memory pada slot DIMM yang tersedia di motherboard. Sebagai contoh, modul DDR memiliki notch berjarak 73 mm dari salah satu ujung PCB (bagian depan). Sedangkan DDR2 memiliki notch pada jarak 71 mm dari ujung PCB. Untuk SDRAM, lebih gampang dibedakan, dengan adanya 2 notch pada contact point-nya.

2.5.3 DRAM (Dynamic Random Access Memory)
Komponen-komponen berbentuk kotak-kotak hitam yang terpasang pada PCB modul memory inilah yang disebut DRAM. Disebut dynamic, karena hanya menampung data dalam periode waktu yang singkat dan harus di-refresh secara periodik. Sedangkan jenis dan bentuk dari DRAM atau memory chip ini sendiri cukup beragam.

2.5.4 Chip Packaging
Atau dalam bahasa Indonesia adalah kemasan chip. Merupakan lapisan luar pembentuk fisik dari masing-masing memory chip. Paling sering digunakan, khususnya pada modul memory DDR adalah TSOP (Thin Small Outline Package). Pada RDRAM dan DDR2 menggunakan CSP (Chip Scale Package). Beberapa chip untuk modul memory terdahulu menggunakan DIP (Dual In-Line Package) dan SOJ (Small Outline J-lead).



2.5.5 DIP (Dual In-Line Package)
Chip memory jenis ini digunakan saat memory terinstal langsung pada PCB motherboard. DIP termasuk dalam kategori komponen through-hole, yang dapat terpasang pada PCB melalui lubang-lubang yang tersedia untuk kaki/pinnya. Jenis chip DRAM ini dapat terpasang dengan disolder ataupun dengan socket. SOJ (Small Outline J-Lead) Chip DRAM jenis SOJ, disebut demikan karena bentuk pin yang dimilikinya berbentuk seperti huruh “J”. SOJ termasuk dalam komponen surfacemount, artinya komponen ini dipasang pada sisi pemukaan pada PCB.

2.5.6 TSOP (Thin Small Outline Package)
Termasuk dalam komponen surfacemount. Namanya sesuai dengan bentuk dan ukuran fisiknya yang lebih tipis dan kecil dibanding bentuk SOJ.

 2.5.7            CSP (Chip Scale Package)
Jika pada DIP, SOJ dan TSOP menggunakan kaki/pin untuk menghubungkannya dengan board, CSP tidak lagi menggunakan PIN. Koneksinya menggunakan BGA (Ball Grid Array) yang terdapat pada bagian bawah komponen. Komponen chip DRAM ini mulai digunakan pada RDRAM (Rambus DRAM) dan DDR.

2.6  Sejarah Perkembangan RAM
2.6.1. R A M
RAM yang merupakan singkatan dari Random Access Memory ditemukan oleh Robert Dennard dan diproduksi secara besar – besaran oleh Intel pada tahun 1968, jauh sebelum PC ditemukan oleh IBM pada tahun 1981. Dari sini lah perkembangan RAM bermula. Pada awal diciptakannya, RAM membutuhkan tegangan 5.0 volt untuk dapat berjalan pada frekuensi 4,77MHz, dengan waktu akses memori (access time) sekitar 200ns (1ns = 10-9 detik).
http://regmedia.co.uk/2007/03/02/sams_60nm_1gb_1.jpg




Gambar 2.6.1. R A M

2.6.2 D R A M
Pada tahun 1970, IBM menciptakan sebuah memori yang dinamakan DRAM. DRAM sendiri merupakan singkatan dari Dynamic Random Access Memory. Dinamakan Dynamic karena jenis memori ini pada setiap interval waktu tertentu, selalu memperbarui keabsahan informasi atau isinya. DRAM mempunyai frekuensi kerja yang bervariasi, yaitu antara 4,77MHz hingga 40MHz.
http://home.bprasetio.or.id/scholar/evomem/dram.jpg


Gambar 2.6.2 D R A M

2.6.3 FP RAM
Fast Page Mode DRAM atau disingkat dengan FPM DRAM ditemukan sekitar tahun 1987. Sejak pertama kali diluncurkan, memori jenis ini langsung mendominasi pemasaran memori, dan orang sering kali menyebut memori jenis ini “DRAM” saja, tanpa menyebut nama FPM. Memori jenis ini bekerja layaknya sebuah indeks atau daftar isi. Arti Page itu sendiri merupakan bagian dari memori yang terdapat pada sebuah row address. Ketika sistem membutuhkan isi suatu alamat memori, FPM tinggal mengambil informasi mengenainya berdasarkan indeks yang telah dimiliki. FPM memungkinkan transfer data yang lebih cepat pada baris (row) yang sama dari jenis memori sebelumnya. FPM bekerja pada rentang frekuensi 16MHz hingga 66MHz dengan access time sekitar 50ns. Selain itu FPM mampu mengolah transfer data (bandwidth) sebesar 188,71 Mega Bytes (MB) per detiknya.
Memori FPM ini mulai banyak digunakan pada sistem berbasis Intel 286, 386 serta sedikit 486.
http://ecx.images-amazon.com/images/I/41SA0XSKKBL._SL500_AA280_.jpg
Gambar 2.6.3 FP RAM

2.6.4  EDO RAM
Pada tahun 1995, diciptakanlah memori jenis Extended Data Output Dynamic Random Access Memory (EDO DRAM) yang merupakan penyempurnaan dari FPM. Memori EDO dapat mempersingkat read cycle-nya sehingga dapat meningkatkan kinerjanya sekitar 20 persen. EDO mempunyai access time yang cukup bervariasi, yaitu sekitar 70ns hingga 50ns dan bekerja pada frekuensi 33MHz hingga 75MHz. Walaupun EDO merupakan penyempurnaan dari FPM, namun keduanya tidak dapat dipasang secara bersamaan, karena adanya perbedaan kemampuan.
Memori EDO DRAM banyak digunakan pada sistem berbasis Intel 486 dan kompatibelnya serta Pentium generasi awal.
http://www.upgradecomputermemory.com/images/products/large/64mb-pc66-sdram-memory-p-n-am20510-am20510.jpg
Gambar 2.6.4  EDO RAM


2.6.5 SDRAM PC66
Pada peralihan tahun 1996 – 1997, Kingston menciptakan sebuah modul memori dimana dapat bekerja pada kecepatan (frekuensi) bus yang sama / sinkron dengan frekuensi yang bekerja pada prosessor. Itulah sebabnya mengapa Kingston menamakan memori jenis ini sebagai Synchronous Dynamic Random Access Memory (SDRAM). SDRAM ini kemudian lebih dikenal sebagai PC66 karena bekerja pada frekuensi bus 66MHz. Berbeda dengan jenis memori sebelumnya yang membutuhkan tegangan kerja yang lumayan tinggi, SDRAM hanya membutuhkan tegangan sebesar 3,3 volt dan mempunyai access time sebesar 10ns.
Dengan kemampuannya yang terbaik saat itu dan telah diproduksi secara masal, bukan hanya oleh Kingston saja, maka dengan cepat memori PC66 ini menjadi standar memori saat itu. Sistem berbasis prosessor Soket 7 seperti Intel Pentium klasik (P75 – P266MMX) maupun kompatibelnya dari AMD, WinChip, IDT, dan sebagainya dapat bekerja sangat cepat dengan menggunakan memori PC66 ini. Bahkan Intel Celeron II generasi awal pun masih menggunakan sistem memori SDRAM PC66.
http://www.upgradecomputermemory.com/images/products/large/1gb-pc100-ecc-sdram-memory-p-n-am21470-am21470.jpg
Gambar 2.6.5 SDRAM PC66


2.6.6 SDRAM PC100
Selang kurun waktu setahun setelah PC66 diproduksi dan digunakan secara masal, Intel membuat standar baru jenis memori yang merupakan pengembangan dari memori PC66. Standar baru ini diciptakan oleh Intel untuk mengimbangi sistem chipset i440BX dengan sistem Slot 1 yang juga diciptakan Intel. Chipset ini didesain untuk dapat bekerja pada frekuensi bus sebesar 100MHz. Chipset ini sekaligus dikembangkan oleh Intel untuk dipasangkan dengan prosessor terbaru Intel Pentium II yang bekerja pada bus 100MHz. Karena bus sistem bekerja pada frekuensi 100MHz sementara Intel tetap menginginkan untuk menggunakan sistem memori SDRAM, maka dikembangkanlah memori SDRAM yang dapat bekerja pada frekuensi bus 100MHz. Seperti pendahulunya PC66, memori SDRAM ini kemudian dikenal dengan sebutan PC100.
Dengan menggunakan tegangan kerja sebesar 3,3 volt, memori PC100 mempunyai access time sebesar 8ns, lebih singkat dari PC66. Selain itu memori PC100 mampu mengalirkan data sebesar 800MB per detiknya.
Hampir sama dengan pendahulunya, memori PC100 telah membawa perubahan dalam sistem komputer. Tidak hanya prosessor berbasis Slot 1 saja yang menggunakan memori PC100, sistem berbasis Soket 7 pun diperbarui untuk dapat menggunakan memori PC100. Maka muncullah apa yang disebut dengan sistem Super Soket 7. Contoh prosessor yang menggunakan soket Super7 adalah AMD K6-2, Intel Pentium II generasi akhir, dan Intel Pentium II generasi awal dan Intel Celeron II generasi awal.
http://home.bprasetio.or.id/scholar/evomem/drdram.jpg
Gambar 2.6.6 SDRAM PC100



2.6.7 DR DRAM
Pada tahun 1999, Rambus menciptakan sebuah sistem memori dengan arsitektur baru dan revolusioner, berbeda sama sekali dengan arsitektur memori SDRAM.Oleh Rambus, memori ini dinamakan Direct Rambus Dynamic Random Access Memory. Dengan hanya menggunakan tegangan sebesar 2,5 volt, RDRAM yang bekerja pada sistem bus 800MHz melalui sistem bus yang disebut dengan Direct Rambus Channel, mampu mengalirkan data sebesar 1,6GB per detiknya! (1GB = 1000MHz). Sayangnya kecanggihan DRDRAM tidak dapat dimanfaatkan oleh sistem chipset dan prosessor pada kala itu sehingga memori ini kurang mendapat dukungan dari berbagai pihak. Satu lagi yang membuat memori ini kurang diminati adalah karena harganya yang sangat mahal.
http://www.pc-memory-upgrade.co.uk/prod-images/sam-pc800-large.jpg
Gambar 2.6.7 DR DRAM


2.6.8 RDRAM PC800
Masih dalam tahun yang sama, Rambus juga mengembangkan sebuah jenis memori lainnya dengan kemampuan yang sama dengan DRDRAM. Perbedaannya hanya terletak pada tegangan kerja yang dibutuhkan. Jika DRDRAM membutuhkan tegangan sebesar 2,5 volt, maka RDRAM PC800 bekerja pada tegangan 3,3 volt. Nasib memori RDRAM ini hampir sama dengan DRDRAM, kurang diminati, jika tidak dimanfaatkan oleh Intel.
Intel yang telah berhasil menciptakan sebuah prosessor berkecepatan sangat tinggi membutuhkan sebuah sistem memori yang mampu mengimbanginya dan bekerja sama dengan baik. Memori jenis SDRAM sudah tidak sepadan lagi. Intel membutuhkan yang lebih dari itu. Dengan dipasangkannya Intel Pentium4, nama RDRAM melambung tinggi, dan semakin lama harganya semakin turun.
http://www.techexcess.net/images/products/900/928_big.jpg
Gambar 2.6.8 RDRAM PC800


2.6.9  SDRAM PC133
Selain dikembangkannya memori RDRAM PC800 pada tahun 1999, memori SDRAM belumlah ditinggalkan begitu saja, bahkan oleh Viking, malah semakin ditingkatkan kemampuannya. Sesuai dengan namanya, memori SDRAM PC133 ini bekerja pada bus berfrekuensi 133MHz dengan access time sebesar 7,5ns dan mampu mengalirkan data sebesar 1,06GB per detiknya. Walaupun PC133 dikembangkan untuk bekerja pada frekuensi bus 133MHz, namun memori ini juga mampu berjalan pada frekuensi bus 100MHz walaupun tidak sebaik kemampuan yang dimiliki oleh PC100 pada frekuensi tersebut.
http://www.shopbot.ca/i-ca/2007/7/113750645_small.jpg
Gambar 2.6.9  SDRAM PC133

2.6.10 SDRAM PC150
Perkembangan memori SDRAM semakin menjadi – jadi setelah Mushkin, pada tahun 2000 berhasil mengembangkan chip memori yang mampu bekerja pada frekuensi bus 150MHz, walaupun sebenarnya belum ada standar resmi mengenai frekunsi bus sistem atau chipset sebesar ini. Masih dengan tegangan kerja sebesar 3,3 volt, memori PC150 mempunyai access time sebesar 7ns dan mampu mengalirkan data sebesar 1,28GB per detiknya.
Memori ini sengaja diciptakan untuk keperluan overclocker, namun pengguna aplikasi game dan grafis 3 dimensi, desktop publishing, serta komputer server dapat mengambil keuntungan dengan adanya memori PC150.
http://educations.newegg.com/category/147/buy/image03.jpg
Gambar 2.6.10 SDRAM PC150

2.6.11 DDR SDRAM
Masih di tahun 2000, Crucial berhasil mengembangkan kemampuan memori SDRAM menjadi dua kali lipat. Jika pada SDRAM biasa hanya mampu menjalankan instruksi sekali setiap satu clock cycle frekuensi bus, maka DDR SDRAM mampu menjalankan dua instruksi dalam waktu yang sama. Teknik yang digunakan adalah dengan menggunakan secara penuh satu gelombang frekuensi. Jika pada SDRAM biasa hanya melakukan instruksi pada gelombang positif saja, maka DDR SDRAM menjalankan instruksi baik pada gelombang positif maupun gelombang negatif. Oleh karena dari itu memori ini dinamakan DDR SDRAM yang merupakan kependekan dari Double Data Rate Synchronous Dynamic Random Access Memory.
Dengan memori DDR SDRAM, sistem bus dengan frekuensi sebesar 100 – 133 MHz akan bekerja secara efektif pada frekuensi 200 – 266 MHz. DDR SDRAM pertama kali digunakan pada kartu grafis AGP berkecepatan ultra. Sedangkan penggunaan pada prosessor, AMD ThunderBird lah yang pertama kali memanfaatkannya.
http://www.pc-memory-upgrade.co.uk/prod-images/infineon-pc2100-ecc.jpg
Gambar 2.6.11 DDR SDRAM

2.6.12 DDR RAM
Pada 1999 dua perusahaan besar microprocessor INTEL dan AMD bersaing ketat dalam meningkatkan kecepatan clock pada CPU. Namun menemui hambatan, karena ketika meningkatkan memory bus ke 133 Mhz kebutuhan Memory (RAM) akan lebih besar. Dan untuk menyelesaikan masalah ini maka dibuatlah DDR RAM (double data rate transfer) yang awalnya dipakai pada kartu grafis, karena sekarang anda bisa menggunakan hanya 32 MB untuk mendapatkan kemampuan 64 MB. AMD adalah perusahaan pertama yang menggunakan DDR RAM pada motherboardnya.
ewe2.jpg
Gambit 2.6.12 DDR RAM

2.6.13 DDR2 RAM
Ketika memori jenis DDR (Double Data Rate) dirasakan mulai melambat dengan semakin cepatnya kinerja prosesor dan prosesor grafik, kehadiran memori DDR2 merupakan kemajuan logis dalam teknologi memori mengacu pada penambahan kecepatan serta antisipasi semakin lebarnya jalur akses segitiga prosesor, memori, dan antarmuka grafik (graphic card) yang hadir dengan kecepatan komputasi yang berlipat ganda.
Perbedaan pokok antara DDR dan DDR2 adalah pada kecepatan data serta peningkatan latency mencapai dua kali lipat. Perubahan ini memang dimaksudkan untuk menghasilkan kecepatan secara maksimum dalam sebuah lingkungan komputasi yang semakin cepat, baik di sisi prosesor maupun grafik.
Selain itu, kebutuhan voltase DDR2 juga menurun. Kalau pada DDR kebutuhan voltase tercatat 2,5 Volt, pada DDR2 kebutuhan ini hanya mencapai 1,8 Volt. Artinya, kemajuan teknologi pada DDR2 ini membutuhkan tenaga listrik yang lebih sedikit untuk menulis dan membaca pada memori.
Teknologi DDR2 sendiri lebih dulu  digunakan pada beberapa perangkat antarmuka grafik, dan baru pada akhirnya diperkenalkan penggunaannya pada teknologi RAM. Dan teknologi DDR2 ini tidak kompatibel dengan memori DDR sehingga penggunaannya pun hanya bisa dilakukan pada komputer yang memang mendukung DDR2.
http://images.techtree.com/ttimages/story/81286_ocz_ddr3_scrn.jpg
Gambar 2.6.13 DDR2 RAM

2.6.14. DDR3 RAM
RAM DDR3 ini memiliki kebutuhan daya yang berkurang sekitar 16% dibandingkan dengan D6DR2. Hal tersebut disebabkan karena DDR3 sudah menggunakan teknologi 90 nm sehingga konsusmsi daya yang diperlukan hanya 1.5v, lebih sedikit jika dibandingkan dengan DDR2 1.8v dan DDR 2.5v.
Secara teori, kecepatan yang dimiliki oleh RAM ini memang cukup memukau. Ia mampu mentransfer data dengan clock efektif sebesar 800-1600 MHz. Pada clock 400-800 MHz, jauh lebih tinggi dibandingkan DDR2 sebesar 400-1066 MHz (200- 533 MHz) dan DDR sebesar 200-600 MHz (100-300 MHz). Prototipe dari DDR3 yang memiliki 240 pin. Ini sebenarnya sudah diperkenalkan sejak lama pada awal tahun 2005. Namun, produknya sendiri benar-benar muncul pada pertengahan tahun 2007 bersamaan dengan motherboard yang menggunakan chipset Intel P35 Bearlake dan pada motherboard tersebut sudah mendukung slot DIMM
ewe.jpg



Gambar 2.6.14. DDR3 RAM





2.7 EVOLUSI MODUL
Selain mengalami perkembangan pada sisi kemampuan, teknik pengolahan modul memori juga dikembangkan. Dari yang sederhana yaitu SIMM sampai RIMM. Berikut penjelasan singkatnya.\

2.7.1 S I M M
Kependekan dari Single In-Line Memory Module, artinya modul atau chip memori ditempelkan pada salah satu sisi sirkuit PCB. Memori jenis ini hanya mempunyai jumlah kaki (pin) sebanyak 30 dan 72 buah.
SIMM 30 pin berupa FPM DRAM, banyak digunakan pada sistem berbasis prosessor 386 generasi akhir dan 486 generasi awal. SIM 30 pin berkapasitas 1MB, 4MB dan 16MB.
Sedangkan SIMM 70 pin dapat berupa FPM DRAM maupun EDO DRAM yang digunakan bersama prosessor 486 generasi akhir dan Pentium. SIMM 70 pin diproduksi pada kapasitas 4MB, 8MB, 16MB, 32MB, 64MB dan 128MB.

2.7.2 D I M M
Kependekan dari Dual In-Line Memory Module, artinya modul atau chip memori ditempelkan pada kedua sisi PCB, saling berbalikan. Memori DIMM diproduksi dalam 2 bentuk yang berbeda, yaitu dengan jumlah kaki 168 dan 184.
DIMM 168 pin dapat berupa Fast-Page, EDO dan ECC SDRAM, dengan kapasitas mulai dari 8MB, 16MB, 32MB, 64MB dan 128MB. Sementara DIM 184 pin berupa DDR SDRAM.

2.7.3 SODIMM
Kependekan dari Small outline Dual In-Line Memory Module. Memori ini pada dasarnya sama dengan DIMM, namun berbeda dalam penggunaannya. Jika DIMM digunakan pada PC, maka SO DIMM digunakan pada laptop / notebook.
SODIMM diproduksi dalam dua jenis,jenis pertama mempunyai jumlah kakai sebanyak 72, dan satunya berjumlah 144 buah

2.7.4 RIMM / SORIMM
RIMM dan SORIMM merupakan jenis memori yang dibuat oleh Rambus. RIMM pada dasarnya sama dengan DIMM dan SORIMM mirip dengan SODIMM.Karena menggunakan teknologi dari Rambus yang terkenal mengutamakan kecepata, memori ini jadi cepat panas sehingga pihak Rambus perlu menambahkan aluminium untuk membantu melepas panas yang dihasilkan oleh memori ini.

HARDDISK


Seperti kita ketahui hardisk adalah tempat penyimpanan data dan dokumen, serta tempat System OS serta aplikasi program di install. Sebenarnya Hardisk dapat di golongkan dengan Memory, yaitu memory permanen, karena data dan dokumen yang tersimpan tidak akan hilang setelah komputer di matikan atau di offkan.
Didalam Hardisk terdapat beberapa komponen-komponen penting, dengan mengetahui komponen-komponen Hardisk ini kita dapat lebih memelihara hardisk kita agar dokumen dan data kita aman tersimpan di dalamnya. Sebab bila anda memiliki Data yang penting, maka bila hardisk anda rusak maka data andapun ikut rusak. Tapi bila Mother Board atau komponen lainnya rusak sementara hardisk tidak rusak, anda dapat mengganti komponen lainnya dan memasang hardisk anda tersebut dan data di dalamnya tetap aman.
2.1 Komponen penyusun Harddisk
Inilah beberapa komponen penting dari Hardisk :






2.1.1 Platter
Berbentuk sebuah Pelat atau piringan yang berfungsi sebagai penyimpan data. Berbentuk bulat,merupakan cakram padat,memiliki pola-pola magnetis pada pada sisi-sisi permukaanya.Platter terbuat dari metal yang mengandung jutaan magnet-magnet kecil yang disebut dengan magnetic domain.Domain-domain ini diatur dalam satu atau dua arah untuk mewakili binary “1” dan “0”
Dalam piringan tersebut terdiri dari beberapa track, dan beberapa sector, dimana track dan sctor ini adalah tempat penyimpanan data serta file system. Misalnya hardisk kita berkapasitas 40 GB, bila di format kapasitasnya tidak sampai 40 Gb. karena harus ada trac dan sector yang dipakai untuk menyimpan ID pengenal dari formating hardisk tersebut.
Jumlah pelat dari masing-masing harddisk berbeda-beda,tergantung pada teknologi yang digunakan dan kapasitas yang dimiliki tiap harddisk.Untuk harddisk-harddisk keluaran terbaru,biasanya sebuah plat memiliki daya tampung 10 sampai 20 Gigabyte.Contohnya sebuah Harddisk berkapasitas 40 Gigabyte,biasanya terdiri dari dua buah plat yang masing-masing berkapasitas 20 Gigabyte.
2.1.2 Spindle
Spindle merupakan suatu poros tempat meletakan platter.Poros ini memiliki sebuah penggerak yang berfungsi untuk memutar pelat harddisk yang disebut dengan spindle motor.Spindle inilah yang berperan ikut dalam menentukan kualitas harddisk karena makin cepat putaranya,berarti makin bagus kualitas harddisknya.Satuan untuk mengukur perputaran adalah Rotation Per Minutes atau biasa disebut RPM.Ukuran yang sering kita dengar untuk kecepatan perputaran ini antara lain 5400 RPM,7200 RPM atau 10000 RPM.
2.1.3 Head
Piranti ini berfungsi untuk membaca data pada permukaan pelat dan merekam informasi ke dalamnya.Setiap pelat harddisk memiliki dua buah head.Satu di atas permukaan dan satunya lagi dibawah permukaan.
Head ini berupa piranti yang elektromagnetik yang ditempatkan pada permukaan pelat dan menempel pada sebuah slider.Slider melekat pada sebuah tangkai yang melekat pada actuator arms.Actuator arms dipasang mati pada poros actuator oleh suatu papan yang disebut dengan logic board.
Oleh karena itu pada saat hardisk bekerja tidak boleh ada guncangan atau getaran, karena head dapat menggesek piringan hardisk sehingga akan mengakibatkan Bad Sector, dan juga dapat menimbulkan kerusakan Head Harddisk sehingga hardisk tidak dapat lagi membaca Track dan Sector dari Hardisk.

2.1.4 Logic Board
Logic Board merupakan papan pengoperasian pada hardisk, dimana pada logic Board terdapat Bios Hardisk sehingga hardisk pada saat dihubungkan ke Mother Board secara otomatis mengenal hardisk tersebut, seperti Maxtor, Seagete dll. selain tempat Bios hardisk Logic Board juga tempat switch atau pendistribusian Power Supply dan data dari Head Hardisk ke mother Board untuk ki kontrol oleh Process.
2.1.5 Actual Axis
Adalah poros untuk menjadi pegangan atau sebagai tangan robot agar Head dapat membaca sctor dari hardisk.
2.1.6 Ribbon Cable
Ribbon cable adalah penghubung antara Head dengan Logic Board, dimana setiap dokumen atau data yang di baca oleh Head akan di kirim ke Logic Board untuk selanjutnya di kirim ke Mother Board agar Processor dapat memproses data tersebut sesuai dengan input yang di terima.
2.1.6 IDE Conector
Adalah kabel penghubung antara hardisk dengan matherboard untuk mengirim atau menerima data. Sekarang ini hardisk rata-rata sudah menggunakan system SATA sehingga tidak memerlukan kabel Pita (Cable IDE)
2.1.7 Setting Jumper
Setiap hardis memiliki setting jumper, fungsinya untuk menentukan kedudukan hardisk tersebut.
Bila pada komputer kita dipasang 2 buah hardisk, maka dengan menyeting Setting Jumper kita bisa menentukan mana hardisk Primer dan mana Hardisk Sekunder yang biasanya disebut Master dan Slave.
Master adalah hardisk utama tempat system di instal, sedangkan Slave adalah hardisk ke dua biasanya dibutuhkan untuk tempat penyimpanan dokumen dan data. Bila Jumper settingnya tidak di set, maka hardisk tersebut tidak akan bekerja.
2.1.8 Power Conector
Adalah sumber arus yang langsung dari power supply. Power supply pada hardisk ada dua bagian :
1.      Tegangan 12 Volt, berfungsi untuk menggerakkan mekanik seperti piringan dan Head.
2.      Tegangan 5 Volt, berfungsi untuk mesupply daya pada Logic Board agar dapat bekerja mengirim dan menerima data.
for tips: buat agan yang punya harddisk external, kalo bisa di jaga bener-bener. maksudnya jangan sampai jatuh/kena benturan keras, karena platter/piringannya bisa rusak. temen ane udah ada yang ngalamin, emang sih datanya bisa di recovery tp kan harga harddisk lumayan mahal.

2.2  Perkembangan Harddisk

2.2.1 Perkembangan Harddisk Menurut Tahun
Di Bawah ini adalah perkembangan hraddisk dari tahun ke tahun, antara lain :

1.      1956Harddisk pertama seberat 500 kg. IBM memperkenalkan hard disk pertama dengan nama IBM 350 (5 MB, 24 Inchi, access time 600ms, 1200 rpm, 500 kg, 10 kW). Hard disk ini disewakan sekitar 5.000 Dollar AS perbulan
2.      1963Open Harddisk. IBM 1311 diperkenalkan pada tanggal 11 Oktober 1962. Hard disk ini dapat menyimpan 2 juta karakter pada disk pask yang dapat diganti (1316). Ketebalan hard disk mencapai 4 inci, berat 4,5 kg dan memiliki 6 disk yang berukuran 14 inci dan 10 permukaan yang dapat ditulis.
3.      1973Winchester’ 73. IBM memulai proyek :Winchester” dengan piringan berputar yang terpasang permanen. Mekanisme loading menjadi masalahnya.
4.      1979Winchester 8 inci pertama. Diperkenalkan harddisk Winchester pertama untuk industri, Harddisk ini sangat berat dan mahal (sekitar 1.000 euro/Mbyte)
5.      1980Penjualan Harddisk 5.25 inci pertama. Seagate meluncurkan ST506 ke pasaran (6 MB, 3600 rpm, harga 1000 dollar AS). Nama model ST506 selama bertahun-tahun menjadi nama dari interface tersebut.
6.      1986Spesifikasi SCSI. SCSI merupakan protokol Input Output yang di standarisasi pertama kali untuk sebuah interface harddisk.
7.      1989Standarisasi IDE. Western Digital membuat standard IDE [Integrated Drive Electronics]
8.      1997, Giant Magnet Resistance [GMR]. Aplikasi pertama dari efek GMR yang ditemukan oleh Peter Grunberg. Dengan DTTA 351680, IBM dapat mengatasi batasan kapasitas 10 GB.
9.      2004Pengenalan NCQ. Segate meluncurkan hard disk SATA pertama dengan Native Command Queing.
10.  2005Harddisk Hybrid Pertama. Samsung memperkenalkan sebuah Hybrid hard disk 2,5 inci. Hard disk ini menggunakan komponen mekanis magnetis dan NAND Flash memory yang berfungsi sebagai buffer yang cepat.
11.  2006Perpendicular Recording. Momentus 5400.3 sebuah hard disk 2.5 inci dari Seagate berkapasitas 160 GB yang menggunakan teknik vertical recording.
12.  2007Hardisk Terabyte. Hitachi meluncurkan Deskstar 7K1000-hard disk terabyte pertama ke pasaran.
13.  Masa Depan, Solid State Drive. Tidak berisik, hemat daya, cepat dan sangat handal. Inilah karakteristik hard disk Masa Depan. SSD dengan dengan kapasitas paling besar saat ini maksimal berukuran 64 GB. Kekurangannya terletak pada harga. Flash memory masih sangat mahal. Para ahli memprediksikan bahwa masih dibutuhkan waktu sekitar 5 tahun sampai SSD dapat menyamai kapasitas hard disk konvensional dengan harga yang sama.

2.2.2 Perkembangan Harddisk Dilihat dari Karateristrik
Trend perkembangan harddisk dapat kita amati dari beberapa karakteristik berikut : 
1.      Kerapatan Data/Teknologi Bahan
Merupakan ukuran teknologi bahan yang digunakan seberapa besar bit data yang mampu disimpan dalam satu satuan persegi. Dalam hal kerapatan data dari awal sampai sekarang terjadi evolusi yang sangat kontras. Pada awal perkembangannya kerapannya sekitar 0.004 Gbits/in2 tetapi pada tahun 1999 labortorium IBM sudah ada sekitar 35.3 Gbits/in2. Tetapi menurut bizpaceinfo akan diperkenalkan apa yang dinamakan TerraBit density. Harddisk pada awal perkembangannya, bahan yang digunakan sebagai media penyimpan adalah iron oxide. Tetapi sekarang banyak digunakan media thin film. Media ini merupakan media yang lebih banyak menyimpan data dari pada iron oxide pada luasan yang sama dan juga sifatnya yang lebih awet.

2. Struktur head baca/tulis
Head baca/ tulis merupakan perantara antara media fisik dengan data elektronik. Lewat head ini data ditulis ke medium fisik atau dibaca dari medium fisik. Head akan mengubah data bit menjadi pulsa magnetik dan menuliskannya ke medium fisik. Pada proses pembacaan data prosesnya merupakan kebalikannya.
Proses baca tulis data merupakan hal yang sangat penting, oleh karena itu mekanismenya juga perlu diperhatikan. Dalam pendahuluan sebelumnya terdapat perbedaan letak fisik head dalam operasinya. Dulu head bersentuhan fisik dengan metal penyimpan. Kini antara head dan metal penyimpan sudah diberi jarak. Bila head bersentuhan dengan metal penyimpan, hal ini akan menyebabkan kerusakan permanen fisik, head yang aus, tentu saja panas akibat gesekan. Apalagi teknologi sekarang kecepatan putar harddisk sudah sangat cepat. Selain itu teknologi head harddiskpun juga mengalami evolusi. Evolusi head baca/tulis harddisk : Ferrite head, Metal-In-Gap (MIG) head, Thin Film (TF) Head, (Anisotropic) Magnetoresistive (MR/AMR) Heads, Giant Magnetoresistive (GMR) Heads dan sekarang yang digunakan adalah Colossal Magnetoresistive (CMR) Heads. Ferrite head, merupakan teknologi head yang paling kuno, terbuat dari inti besi yang berbentuk huruf U dan dibungkus oleh lilitan elektromagnetis. Teknologi ini diimplementasikan pada pertengahan tahun 1980 pada harddisk Seagate ST-251. Kebanyakan terdapat pada harddisk yang ukurannya kurang dari 50MB. Metal-In-Gap (MIG), merupakan penyempurnaan dari head Ferrite. Biasanya digunakan pada harddisk yang ukurannya 50MB sampai dengan 100MB. Thin Film (TF) heads, berbeda jauh dengan jenis head sebelumnya. Head ini dibuat dengan proses photolothografi seperti yang digunakan pada pembuatan prosessor. (Anisotropic) Magnetoresistive (MR/AMR) Heads, head ini digunakan untuk membaca saja. Untuk penulisannya digunakan head jenis Thin Film. Diimplementasikan pada harddisk ukuran 1GB sampai dengan 30GB. Giant Magnetoresistive (GMR) Heads, merupakan penemuan dari peneliti Eropa Peter Gruenberg and Albert Fert. Digunakan pada harddisk ukuran besar seperti 75GB dan kerapatan tinggi sekitar 10 Gbits/in2 sampai dengan 15 Gbits/in2. Karena teknologi Giant Magnetoresistive (GMR) mulai ditarik dari pasaran, sebagai penggantinya adalah Colossal Magnetoresistive (CMR).
Kecepatan putar pada jaman awal sekitar 3600RPM. Dengan semakin berkembangnya teknologi, kecepatan putar ditingkatkan menjadi 4500RPM dan 5400RPM. Karena kebutuhan media penyimpan yang mempunyai kemampuan tinggi dibuatlah dengan kecepatan 7200RPM yang digunakan pada harddisk SCSI.
3.      Kapasitas
Kapasitas harddisk pada saat ini sudah mencapai orde ratusan GB. Hal ini dikarenakan teknologi bahan yang semakin baik, kerapatan data yang semakin tinggi. Teknologi dari Western Digital saat ini telah mampu membuat harddisk 200GB dengan kecepatan 7200RPM. Sedangkan Maxtor dengan Maxtor MaxLine II-nya yaitu harddisk berukuran 300GB dengan kecepatan 5400RPM. Beriringan dengan transisi ke ukuran harddisk yang lebih kecil dan kapasitas yang semakin besar terjadi penurunan dramatik dalam harga per megabyte penyimpanan, membuat hardisk kapasitas besar tercapai harganya oleh para pemakai komputer biasa. hd4.jpg Gambar 3 Sistem kontrol head Pada tiap piringan penyimpan terdapat satu head. Untuk menjangkau tengah pinggir piringan digunakan sliders sebagai perantaranya.

2.2.3 Teknologi Harddisk masa-depan
Harddisk dimasa mendatang salah satunya dititik beratkan pada kecepatan akses dan kapasitasnya. Hal ini dapat dilakukan dengan mereduksi komponen mekanis dari fisik harddisknya. Komponen mekanis yang tidak mampu bekerja pada frekuensi tinggi digeser dengan komponen yang bersifat elektris yang mampu bekerja dalam orde MHz bahkan GHz.
Dapat dilihat saat ini sudah dirilis berbagai macam media penyimpan elektronis dalam bentuk kecil. Misalnya USB Drive dan MultiMedia Card. Bila nantinya teknologi ini diterapkan dan dapat harganya terjangkau, kemampuan komputer dari sisi kecepatan akses baca/tulis media penyimpan akan meningkat pesat. Otomatis kemampuan PC Server untuk melayani request dari client akan meningkat.